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Abstract—Large deflection axisymmetric response analyses of cylindrically orthotropic thin annular
plates. resting on annular elastic foundations and subjected to uniformly distributed loads arc
presented. Static and step function loads applied to clamped and simply supported annular plates
are considered. The natural boundary conditions employed at the hole are consistent with those
obtained from Hamilton's principle. Von Karmin type governing equations are solved using the
orthogonal point collocation method in conjunction with the Newmark-f scheme. The maximum
response to step loads obtained from static analysis is shown to agree very well with that obtained
from a transient analysis. Thus one static analysis is sufficient to obtain the maximum response to
a whole sct of step loads, instead of separate transient selutions for each load. New results are
presented to study the effects of the foundation parameters on the plate response.

L. INTRODUCTION

Annular plate structures on clastic foundations are encountered in foundations of large
storage tanks, deep sca pressure vessels and heavy duty machines, Large dynamic loads
necessitate large deflection dynamic analysis. The large deflection static response of an
isotropic circular plate on Winkler foundation has been studied by Sinha (1963) and Datta
(1974) using Berger's approximation. Bolton (1972) has employed the Galerkin technique
with several terms for the large deflection static analysis of an isotropic plate on a Winkler
foundation. The large amplitude free vibration of plates on a Winkler foundation has been
analysed by Gajendra (1967) employing Berger's approximation and the Galerkin
technique. The large deflection transient response of an isotropic circular plate on a Paster-
nak foundation for the case of step loads has been presented by Nath (1982) using the
Chebyshev series and the Houbolt technique.

The large deflection transient response of an orthotropic annular plate on a Winkler-
Pasternak foundution has been studied by Nath and Jain (1983) using the Chebysev series
and the Houbolt technique. Immovable clamped and simply supported annular plates with
a free edge at the hole have been analysed for one value of the step load. The free edge
condition used by Nath and Jain (1983) corresponds to the condition of a zero shear force
in the plate and it is valid if the Pasternak foundation beneath the plate is continuous.

The objective of this study is to obtain the large deflection axisymmetric response of
cylindrically orthotropic thin annular plates resting on annular clastic foundations using
the consistent natural boundary condition of zero generalized shear foree (Viasov and
Leontiev, 1966) at the free inner edge of the plate and the foundation. Immovable clamped
and simply supported plates subjected to uniformly distributed static and step function
loads are considered. Based on an energy balance, the maximum dynamic response to step
loads is obtained from the results for static loads. One static analysis is sufficient to get the
maximum dynamic response to a whole set of step loads instead of separate transient
solutions for cach load. In order to establish the accuracy of this method. transient analyses
have also been conducted for typical loads for comparison. A three parameter non-lincar
model of the foundation is employed. The foundations are assumed to be capable of exerting
pull and push, i.e. the plate is attached to the foundation at every point. Results are presented
for linear Winkler, Pasternak and non-linear Winkler foundations and the effects of geo-
metric nonlinearity and the foundation parameters are investigated.
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2. GOVERNING EQUATIONS
In the Winkler model it is assumed that the foundation applies to the plate distributed
reaction p normal to the plate, which is proportional to the plate deflection W, so that

p=—kW (H

where k is the Winkler parameter. Pasternak (1954) included the effect of shear deformation
of the foundation. For the case of axisymmetric deflection of a circular plate, the reaction
p for the Pasternak foundation is given by

i
r= —kW+ ;(ngr).r (2)

where k and g are the two foundation parameters. The reaction for a non-linear Winkler
foundation, which is modelled as in Massalas and Kafousias (1979), in terms of parameters
k and k. is given by

= —kW—k W (3)

In this paper, the foundation has been modelled in terms of three parameters &, &, ¢
in order to study plates on linear Winkler, Pasternak and non-lincar Winkler foundations.
The foundation reaction is taken as

{
p=—kW—k W'+~ (grW,),. @)

The inertia of the foundation is accounted for in the sense of Viasov and Leontiev (1966)
by using an effective mass density for the plate. The transverse displacement W(r, 2. 1) in
the single layer foundation of depth # is assumed as

Wilr,z, 1) = y(2)W(r. 1). (5)

The kinetic energy of an area element d 4 of the plate and the foundation can be expressed
as

#H

Liyir? dA+§J‘ Yo 2 (z) dz W3 dd = Lhy*W? da )

0

where h is the thickness of the plate and 7, 7, are the mass densities of the plate and the
foundation, respectively, Thus the effective mass density y* of the plate is given by

H
?‘=y+f Yo (z) dz/h. (7N

The gencralized shear force ¥, is related to the stress resultants M,, My, N,, N, and the
foundation modulus g by

1
V'=A’{r.r+;(N{r"MO)"}'(Nr‘{'g)”/J- (8)

The last term in this expression is the contribution of the in-plane force in the plate and the
shear in the foundation.

The equations of motion and compatibility for moderately large axisymmetric deflec-
tions of a cylindrically orthotropic thin circular plate are given by Chia (1980) in terms of
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Fig. 1. Geometry of annular plates on elastic foundation,

the deflection W and the stress function @. Including the reaction and the inertia of the
foundation, these equations may be expressed as

I ﬂ h&) 2
O, +-®,— S0+ —2—;-(;4{,) =0
3 v
D['Wyrr'*' Wor= é W'] ~W.(@+gr) = J (g—kW—k, WJ_)’"’”’.M)’ dr— V;(b)
b n
where

® Eg Vy

= — = (D e TR e
Nr !" Nu rs E' v (9)
D= 10
T 1R(B-vd) (10)

and a, b are the outer and inner radii of the plate (Fig. 1). The elastic moduli and Poisson’s
ratios are E,, E, and v,, v,, and f is the orthotropic parameter. The uniformly distributed
load is ¢. The generalized shear force for an annular plate attached to an elastic foundation
at a free hole is

1 o
V.(b) = -D(Wm+;W,,—%W,)+<;+g)w,=0. (h

Introducing the dimensionless variables

w (a—b) b _r=b _[ D ]‘“
v=5% 9= Samw PTame Tt el ¢
_qa' _ Ka* _kya' _ga
C=zr K=gm X=%En “er 12

and using equation (11) reduces the governing equations (9) to the following dimensionless
form:
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(P+3 " +(p+ P —BO+6(B—vi)p+Iw =0

o , o 2=y | R R )
P+ w"+{(p+ " =B —{p+ P+ ———(p+5) (Pp+(Kw+ K w') dp
o

Bl +&y*
n e O [P 12D } . } .
_ 2)° N . - — o %) d 13
(l+,) (p+ YGu :| (l+§) [‘L { ————ﬁ —— W (p+5) P (13)

where () and () are derivatives with respect to p and t. respectively. Equations (13) have
to be solved subject to the boundary conditions for the immovable clamped and simply
supported outer edges and the free inner edge. namely
p=0 ¢=0, w+vu/i=0
p=1 w=0, ¢ —vd/(1+5H =0 (14
w' = 0 (clamped) or "+ v,u’/(1 +&) = 0 (simply supported).

The dimensionless stress o is related to the dimensional stress ¢* by

I METHOD OF SOLUTION

The method of solution is akin to the one employed by Dumir and Khatri (1985). For
static analysis, the inertia term is set to zero. The load is incremented in small steps and the
governing equations (13), subject to boundary conditions (14), are solved iteratively at each
step by lincarizing the non-lincar terms as

v, = w; b, (w'),i = winj. (1%

The predicted term w) is taken as the mean of its value at the two preceding iterations. For
the first iteration w)_is extrapolated quadratically from w” at the three preceding steps

W'}?=A,W}AE+A3n~’}_3+A3W},»3 (16)

where Ay, A, Ayare: 1,0,0(/ = 1):2, —1L,0(J = 2); 3, -3, 1 (/ 2 3). An orthogona! point
collection method has been used for spatial discretization with the zeros of a Legendre
polynomial as collocation points. For N collocation points, w and ¢ are approximated at
step J as

¥l N
w= Y " e p= T p" b (17)
m =1 m o=}

The five boundary conditions (14) and the 2¥ collocation equations for differential equa-
tions {13) constitute 2N + 5 equations for the «'s and b’s. The iterations are continuced
until the difference between the values of w(0), ¢'(0). ¢'(1) at successive iterations is less
than 0.1%.

The maximum response w(0)q., under a uniformly distributed step load is obtained
from the static response. It is based on the assumptions that at the instant of maximum
deflection at the free edge, the annulus has zero velocity and that the deflected shape is the
same as that under a static load which causes the same deflection at the free edge. I the
static load @ results in a deflection w(0) with the total potential energy U(Q) of the plate
and the foundation, then the step load @, which will yield w(0) ., equal to w(0) is given by
the encrgy balance equation
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Qo

2
a

= 2rE.h° 83 { Y ( - 5)17”] = U(Q). (18)

a i
J- W(rigylnr dr = 2nE.h J' w(p)(p+3) dp
13 9

o \m+1  m

One static analysis is sufficient to get the maximum response to the whole set of step loads,
instead of separate transient solutions for each step load.

As a check on the accuracy of the above method, transient analyses for step loads are
also conducted. The inertia term in equations (13) is discretized using the Newmark-f
scheme with the parameters corresponding to the average acceleration method. The time is
incremented in small steps and the equations are solved iteratively at each step as in the
static case.

4. RESULTS AND CONCLUSIONS

Convergence studies. not reported here for brevity, have shown that six collocation
points and a time step size Ar = 0.002 yield accurate results. The present transient results
are compared with the results of Nath and Jain (1983) in Table 1. The results are given for
the boundary condition of zero shear at the free edge in the plate as well as zero generalized
shear foree in the plate and the foundation at the free edge. The present results agree very
well with the results of Nuath and Jain (1983). It is scen that for the Pasternak foundation,
the deflection of the plate with the consistent boundary condition of zero ¥, at the hole is
much smaller than the deflection of the plate with zero shear in the plate at the hole.

Results are presented for clamped and simply supported annuli with zcro ¥, at the
free edge, for annular ratio bfa = 1/3, orthotropic parameter ff =1 and 3; and several
combinations of foundation parameters K, ¢ and K. Poisson’s ratio v, is taken as 0.25,
It may be noted that the effect of the inertia of the foundation is to modily the effective
density of the plate (equations (7) and (12)). Thus the transient response to a step load
including the inertia of the foundition remains the sume function of non-dimensional time
7, but with a ditferent non-dimensional time scale factor.

The maximum response w(0),,, obtained from the dynamic analysis is compured in
Table 2 with the approximate w(0),., predicted from the static analysis. It is evident that
the approximate method gives acceptable results for engineering applications, the error
being less than 4%, The maximum radial bending and membrane stresses at the support
for clamped plates subjected to step load are given in Table 3 along with the approximate
values predicted from static analysis. The results of transient analysis are in good agreement
with the results of static analysis. Similar comparisons of maximum circumferential bending

Table |. Comparison of maximum transient response w(0),, (b/a = 1/3, v, = /3, f =12, 0, = 20, K, =)

W(0)mae
Clamped Simply supported

Zero Zero
general- general-

ized ized

Zero shear shear Zero shear shear

force in force force in force

plate at V,at platc at v, at

hole hole hole hole

Nath and Nath and

k(ta=m'1ID  glta=b)')/D  Juin (1983) Present Present Jain (1983) Present Present
100 0 0.2630 0.2624 0.2624 0.3104 0.3112 0.3112
100 25 0.1715 0.1711 0.1164 0.1933 0.1930 0.1416
100 50 0.1288 0.1288 0.0771 0.1427 0.1428 0.0924
150 0 0.1934 0.1937 0.1937 0.2029 0.2024 0.2024

150 50 0.1055 0.1056 0.0691 0.1137 0.1138 0.0793
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Table 2. Maximum deflection under step load Qu(K, = 0. b'a = 1/3)

B=1 g=3
Approx. Percentage Approx. Percentage
K G W{(0) max w(0) s error W(0) max W{(0) error

(a) Clamped, Q, = 13

0 0 1.999 1.985 -0.7 1.525 1.533 0.5
5 0 1.769 1.777 0.5 1.383 1.390 0.5
10 0 1.566 1.586 1.3 1.249 1.260 0.9
5 1 1.3 1.346 0.1 1.118 L1117 —0.1
10 l 1.203 1.203 0.0 1.007 1.014 0.7
5 2 1.053 1.062 0.9 0912 0.912 0.0
10 2 0.944 0.947 0.3 0.829 0.834 0.6
(b) Simply supported, @, = 10
0 0 2.263 2.261 -0.1 1.752 1.732 - 1.1
5 0 1.964 1.957 —-04 1.539 1.522 - 1.1
10 0 1.691 1.670 —1.2 1.345 1.324 -1.6
5 { 1.461 1.458 -0.2 1.206 1.192 -1.2
10 I 1.240 1.233 -0.6 1.042 1.033 -09
5 2 1.091 1.104 [.2 0.944 0.933 -0.6
10 2 0.940 0.936 -0.4 0.824 0.822 ~0.2

Table 3. Maximum radial stress at support for clamped plates under step load @, = 15 (K, =0,

bja = 1/3)
Approx. Percentage Approx. Percentage

f K G Ohar Or error T an.. error
l 0 0 15.80 1593 0.8 1.535 1.526 ~0.6
5 0 14.03 13.89 -1.0 1.215 1.214 -0.1

10 0 12.50 12.22 -22 0.954 0.964 1.0

5 1 11.62 11.59 -0.3 0.735 0.734 -0.1

10 1 10.55 10.46 -0.9 0.589 0.588 -0.2

5 2 9.90 10.13 23 0.470 0.469 -02

10 2 9.55 9.33 =23 0.386 0.386 0.0

3 0 0 13.85 14.01 1.2 1.639 1.641 0.1
5 0 12.46 12.51 0.4 1.347 1.345 -0.1

10 0 11.44 11.25 -1.7 1.103 1.103 0.0

5 l 10.93 10.82 -1.0 0.906 0.907 0.1

10 l 10.09 9.90 —-1.9 0.752, 0.752 0.0

5 2 9.72 9.64 -048 0.632 0.634 0.3

10 2 8.88 8.94 0.7 0.537 0.534 -06

Table 4. Maximum circumferential stress at hole for simply supported plates under step load
Qo =10 (K, =0, bja = 1/3)

Approx. Percentage Approx. Percentage

B K G A .. error an.. o error
{ 0 0 4041 3.956 =21 9.042 9.055 0.1
5 0 3.552 3.444 -3.0 6.790 6.780 0.0

10 0 3.233 2932 -93 5.015 4.932 -1.7

5 1 2.386 2.288 -4.1 3813 3.804 =02

10 1 2.048 1.898 -73 2.750 2.731 -0.7

S 2 1.600 1.519 -5.1 2170 2.162 -04

10 2 1.321 1.270 -39 1.610 1.602 -0.5

3 0 0 7923 7.536 -49 8.891 8.669 ~25
5 0 6891 6.524 -53 6.853 6.645 -30

10 0 6.035 5.558 -79 5224 5.059 -32

5 1 4.714 4.578 =29 4.161 4.105 -13

10 1 4.089 3.859 ~5.6 3.140 3.091 —1.6

5 2 3410 3.246 -4.38 2.580 2.550 ~-12

10 2 2804 2.758 ~1.6 1.971 1.960 ~0.6
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Fig. 2. Deflection profiles by static and dynamic analysis for step load (K, = 0, ff = 1, bja = 1/3).

and membrane stresses at the support for simply supported plates subjected to a step load
are shown in Table 4. The transient results are in fair agreement with those predicted from
the static analysis. The maximum error is 9.3%. The profiles of maximum deflection for
clamped and simply supported isotropic plates subjected to step loads, obtained by the
static and dynamic analyses are compared in Fig. 2 for three scts of foundation parameters,
K and G. There is good agreement amongst the profiles obtained by static and dynamic
analyses. The profiles of miximum bending and membrane stresses for plates under step
loads, obtained by transient analyses are compared in Fig. 3 with the profiles obtained by
static analysis. There is satisfactory agreement between the two sets of profiles.

The comparisons given in Tables 2-4 and Figs 2 and 3 have demonstrated that a fairly
accurate maximum response for step loads can be obtained from the static results. This
approach is uscd to compute the maximum deflection for a set of step loads. The static and
approximate dynamic deflection response of clamped annuli with b/a = 1/3 is presented in
Figs 4 and 5 for f =1 and 3. respectively, for selected Winkler-Pasternak foundation
stiffnesses. It is evident from these figures that the deflection decreases as fi, K and G
increase. The transverse plate stiffness increases with plate deflection due to the increasing
action of membrane effects. Therefore, the effect of the geometric nonlinearity of the plate
is to increase its transverse stiffness and thus reduce the relative effect of foundation
parameters K and G in reducing deflections. Moreover, an increase in G leads to a greater
reduction in the maximum deflection than an increase in K.

The static and approximate dynamic deflection response of an isotropic simply sup-
ported plate with b/a = 1/3 is shown in Fig. 6. It may be noted from Figs 4 and 6 as well
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Fig. 7. Static responsce of plates on non-linear Winkler foundation (bra = 13 ff = LK =5, = ).

as Tuble 2 that the foundation paramcters K and ¢ produce i greater reduction in the
maximum deflections of simply supported plates than of clamped plates. This is due to the
lower transverse stiffness of the simply supported plates. The static response of isotropic
clamped and simply supported plates with bf/a = 1/3 attached to a non-lincar Winkler
foundation is depicted in Fig. 7. The deflection decreases as the non-lincar parameter K,
increases. Parameter K, has a greater effect on the maximum dellection for the simply
supported plates than for the clamped plates. -

It may be concluded that sutliciently accurate maximum dynamic deflections produced
by 4 whole set of step louads may be computed from a single gecometrically non-lincar static
analysis for clamped and simply supported annular orthotropic plates resting on elastic
foundations. This method is very economicul compared with computing separate transient
solutions for each step load. An increase in G leads to a greater reduction in the maximum
deflection than an increase in K.
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